
Math 105, Assignment 6 Due 2015-04-08, 4:00 pm

In the following problems you are expected to justify your answers unless stated otherwise.
Answers without any explanation will be given a mark of zero. The assignment needs to be
in my hand before I leave the lecture room or you will be given a zero on the assignment!
Don’t forget to staple your assignment! You may lose a mark if you do not.

1. Determine whether the following series converge or diverge:
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Hint: It may be a good idea to examine
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Hint: You may assume without proof that for large enough n
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is positive and decreasing. Try a limit comparison test with
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for some p, as done in class.

2. Suppose
∑∞

n=2 an is a geometric series. Suppose that a5 = 112, a7 = 7

(a) Determine all possible values for the ratio, r = an+1

an

(b) Suppose that r < 0, determine a2, a9.

(c) Determine if the series converges and if it does, evaluate it.
(Note: the series starts at n = 2 not n = 0)

3. Determine the center and radius of convergence of the following power series:
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Hint: You may need to use the fact that
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(d) Bonus:
∞∑
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n, where fn is the Fibonacci sequence.

f0 = 1 f1 = 1, fn = fn−1 + fn−2 n ≥ 2.

You may assume without proof that limn→∞
fn+1
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exists.

Fact: One can show that the above power series is the Taylor series of
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4. Suppose we have
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Determine the convergence of the series:

∞∑
n=1

an

Hint: Use the divergence test on the convergent series. What does that tell you about
the limit
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5. Find the power series and radius of convergence for the following functions:

(a) sin x, centered at x = π
3

(b) x2015ex
2
, centered at x = 0.

(c) x2 log(2015− x), centered at x = 0.

(d)
2015
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, centered at x = 1.
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