Math 105, Assignment 6

In the following problems you are expected to justify your answers unless stated otherwise. Answers without any explanation will be given a mark of zero. The assignment needs to be in my hand before I leave the lecture room or you will be given a zero on the assignment! Don't forget to staple your assignment! You may lose a mark if you do not.

1. Determine whether the following series converge or diverge:

(a)
$$\sum_{s=2015}^{\infty} \frac{4^{2s} \pi^{-s}}{e^s}$$

(b)
$$\sum_{a=5}^{\infty} \frac{1}{a \log^{99} a}$$

(c)
$$\sum_{\substack{i=4\\ \text{Hint:}}}^{\infty} \frac{\sin(2015 \log i)}{i^{2015}}$$

Hint: It may be a good idea to examine

$$\sum_{i=4}^{\infty} \left| \frac{\sin(2015\log i)}{i^{2015}} \right|$$

(d)
$$\sum_{f=1}^{\infty} \frac{(2f)!}{f^{2015}(f!)^2}$$

(e)
$$\sum_{n=1}^{\infty} \frac{n+4n\sqrt{n+5\sqrt{n}}}{\sqrt[3]{8n^9-en^6+\pi n^3-2015}}$$

Hint: You may assume without proof that for large enough n

$$a_n = \frac{n + 4n\sqrt{n + 5\sqrt{n}}}{\sqrt[3]{8n^9 - en^6 + \pi n^3 - 2015}}$$

is positive and decreasing. Try a limit comparison test with

$$b_n = \frac{1}{n^p}$$

for some p, as done in class.

- 2. Suppose $\sum_{n=2}^{\infty} a_n$ is a geometric series. Suppose that $a_5 = 112, a_7 = 7$
 - (a) Determine all possible values for the ratio, $r = \frac{a_{n+1}}{a_n}$
 - (b) Suppose that r < 0, determine a_2, a_9 .
 - (c) Determine if the series converges and if it does, evaluate it. (Note: the series starts at n = 2 not n = 0)
- 3. Determine the center and radius of convergence of the following power series:

(a)
$$\sum_{n=3}^{\infty} \frac{n^2}{5^{n+1}} (x+10)^n$$

(b) $\sum_{n=2}^{\infty} \frac{n!}{n^2 n^n} (y-1)^n$,
Hint: You may not

Hint: You may need to use the fact that

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

(c)
$$\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdots (2n-2)(2n)}{n!} x^n$$

(d) Bonus: $\sum_{n=1}^{\infty} f_n x^n$, where f_n is the Fibonacci sequence.

$$f_0 = 1$$
 $f_1 = 1$, $f_n = f_{n-1} + f_{n-2}$ $n \ge 2$.

You may assume without proof that $\lim_{n\to\infty} \frac{f_{n+1}}{f_n}$ exists. **Fact:** One can show that the above power series is the Taylor series of

$$\frac{1}{1-x-x^2}$$

4. Suppose we have

$$\sum_{n=1}^{\infty} \frac{5a_{n+1}n^3 - 4\sqrt{n}}{a_n n^3 + 6n^2 - 2} = \sqrt[e]{\pi^{2015}}$$

Determine the convergence of the series:

$$\sum_{n=1}^{\infty} a_n$$

Hint: Use the divergence test on the convergent series. What does that tell you about the limit

$$\lim_{n \to \infty} \frac{5a_{n+1}n^3 - 4\sqrt{n}}{a_n n^3 + 6n^2 - 2}$$

- 5. Find the power series and radius of convergence for the following functions:
 - (a) $\sin x$, centered at $x = \frac{\pi}{3}$
 - (b) $x^{2015}e^{x^2}$, centered at x = 0.
 - (c) $x^2 \log(2015 x)$, centered at x = 0.
 - (d) $\frac{2015}{(2+x)^2}$, centered at x = 1.