Math 105, Assignment 6 Due 2015-04-08, 4:00 pm

In the following problems you are expected to justify your answers unless stated otherwise.
Answers without any explanation will be given a mark of zero. The assignment needs to be
in my hand before I leave the lecture room or you will be given a zero on the assignment!
Don’t forget to staple your assignment! You may lose a mark if you do not.

1. Determine whether the following series converge or diverge:
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is positive and decreasing. Try a limit comparison test with
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for some p, as done in class.

2. Suppose EZOZQ a, is a geometric series. Suppose that a5 = 112,a; =7
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(a) Determine all possible values for the ratio, r = *2*

(b) Suppose that r < 0, determine as, ag.
(c) Determine if the series converges and if it does, evaluate it.

(Note: the series starts at n = 2 not n = 0)

3. Determine the center and radius of convergence of the following power series:



0 2

(a) Z 5Z+1 (x +10)"

n=3

) S -1y,

n=2

Hint: You may need to use the fact that
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(d) Bonus:
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You may assume without proof that lim,, .. ! 7}“ exists.

Fact: One can show that the above power series is the Taylor series of
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4. Suppose we have
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Determine the convergence of the series:
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5. Find the power series and radius of convergence for the following functions:

(a) sinz, centered at v = %

(b) 22015¢** | centered at = 0.

(c) 2%log(2015 — x), centered at z = 0.
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(d) , centered at x = 1.
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